The generator matrix

 1  0  0  1  1  1 X^2+X  X  1  1  1 X^2  1  X  0  1  1  1 X^2  1  X  X  1  1 X^2+X  0  1  1 X^2  1  0  1  X  1  0  1  1  1 X^2  1  1 X^2+X X^2  1  1  1  1  X  1  1  1  1  1  0 X^2 X^2+X  1  1  0  1  1  0  1  X  1  1
 0  1  0  0  1 X+1  1 X^2 X^2+X+1 X+1 X^2+X  1 X^2  1 X^2 X^2+X X+1  0  1 X^2+1  1 X^2  0  0  1  1 X^2+X+1 X^2+X+1  1  1  X  X  1  1  1  1 X^2+X  X  1 X^2+1 X+1  1  1 X^2+X+1 X^2+X+1 X^2+X X^2+X  0 X^2+X  0  0  0 X^2  1  1  1 X^2+1 X^2+X  1 X^2+1 X^2+1  1  0  1 X^2+1 X+1
 0  0  1  1  1 X^2  1  1 X+1 X^2+X X^2+1 X^2+X  X X+1  1 X^2+X+1  1  0 X^2+1 X^2+X  0  1  X X+1  1  X X+1  0 X^2+X+1 X+1  1 X^2+X+1 X^2 X^2+1  0 X^2 X^2+1  X X^2 X^2 X^2+X X+1  1 X^2  1 X^2+1 X^2+X+1  1 X^2+1  X X^2+X X^2+X+1 X^2+1  1 X^2+X X^2+X+1 X^2+X+1 X+1 X^2+X+1 X^2+1 X^2+X+1 X^2+X X^2 X^2 X^2+X  0
 0  0  0  X X^2+X  0  X  X X^2+X  0 X^2+X  0  0 X^2+X  X  X  X X^2  X X^2 X^2 X^2+X X^2+X  0 X^2 X^2+X X^2  X X^2  0 X^2  0  X  0  X  0  X  X X^2+X X^2+X  0 X^2  0  0  0 X^2+X X^2+X X^2+X X^2 X^2 X^2  0  0  X X^2+X  X  X X^2  0  0 X^2 X^2 X^2+X X^2+X  X  X
 0  0  0  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0  0  0  0 X^2  0 X^2 X^2 X^2 X^2  0 X^2  0  0  0  0 X^2  0 X^2 X^2  0  0 X^2  0 X^2  0  0 X^2 X^2 X^2  0 X^2  0  0  0  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2  0  0  0

generates a code of length 66 over Z2[X]/(X^3) who�s minimum homogenous weight is 60.

Homogenous weight enumerator: w(x)=1x^0+213x^60+164x^61+528x^62+204x^63+711x^64+188x^65+528x^66+168x^67+427x^68+120x^69+286x^70+100x^71+189x^72+68x^73+118x^74+8x^75+44x^76+4x^77+10x^78+15x^80+2x^82

The gray image is a linear code over GF(2) with n=264, k=12 and d=120.
This code was found by Heurico 1.16 in 0.861 seconds.